Early Hospital Mortality Prediction using Vital Signals
نویسندگان
چکیده
Early hospital mortality prediction is critical as intensivists strive to make efficient medical decisions about the severely ill patients staying in intensive care units. As a result, various methods have been developed to address this problem based on clinical records. However, some of the laboratory test results are time-consuming and need to be processed. In this paper, we propose a novel method to predict mortality using features extracted from the heart signals of patients within the first hour of ICU admission. In order to predict the risk, quantitative features have been computed based on the heart rate signals of ICU patients. Each signal is described in terms of 12 statistical and signal-based features. The extracted features are fed into eight classifiers: decision tree, linear discriminant, logistic regression, support vector machine (SVM), random forest, boosted trees, Gaussian SVM, and K-nearest neighborhood (K-NN). To derive insight into the performance of the proposed method, several experiments have been conducted using the well-known clinical dataset named Medical Information Mart for Intensive Care III (MIMIC-III). The experimental results demonstrate the capability of the proposed method in terms of precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC). The decision tree classifier satisfies both accuracy and interpretability better than the other classifiers, producing an F1-score and AUC equal to 0.91 and 0.93, respectively. It indicates that heart rate signals can be used for predicting mortality in patients in the ICU, achieving a comparable performance with existing predictions that rely on high dimensional features from clinical records which need to be processed and may contain missing information. Keywords—Intensive care, mortality prediction, statistical and signal-based features
منابع مشابه
Early prediction of COVID-19 mortality risk based on demographic, vital sign and blood test
Background: Early prediction of the outcome situation of COVID-19 patients can decrease mortality risk by assuring efficient resource allocation and treatment planning. This study introduces a very accurate and fast system for the prediction of COVID-19 outcomes using demographic, vital signs, and laboratory blood test data. Methods: In this analytic study, which is done from May 2020 to June ...
متن کاملOutcome Prediction for Patients with Severe Traumatic Brain Injury Using Permutation Entropy Analysis of Electronic Vital Signs Data
Permutation entropy is computationally efficient, robust to noise, and effective to measure complexity. We used this technique to quantify the complexity of continuous vital signs recorded from patients with traumatic brain injury (TBI). Using permutation entropy calculated from early vital signs (initial 10∼20% of patient hospital stay time), we built classifiers to predict in-hospital mortali...
متن کاملUsing ordinal patterns and permutation entropy to predict outcomes of severe traumatic brain injury patients
Permutation entropy is computationally efficient, robust to noise, and effective to measure complexity. We used this technique to quantify the complexity of continuous vital signs recorded from patients with traumatic brain injury (TBI). Using permutation entropy calculated from early vital signs (initial 10∼20% of patient hospital stay time), we built classifiers to predict in-hospital mortali...
متن کاملPrediction of in-hospital mortality and admission to ICU using vital signs - a study of Early Warning Score as an alternative to traditional triage
Background Triage of patients in the Emergency Department includes scoring of vital parameters. The objective of this study was to compare two such triage systems for assessing vital parameters a single-parameter system, T-vital, as used in Danish Emergency Process Triage, and a multiple-parameter system, T-EWS, which we based on Early Warning Score (EWS) and correlate the triage scores to in-h...
متن کاملPermutation entropy
Permutation entropy is computationally efficient, robust to outliers, and effective to measure complexity of time series. We used this technique to quantify the complexity of continuous vital signs recorded from patients with traumatic brain injury (TBI). Using permutation entropy calculated from early vital signs (initial 10~20% of patient hospital stay time), we built classifiers to predict i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018